
A Pattern Search Method for Unpreprocessed
C Programs based on Tokenized Syntax Trees

Atsushi Yoshida and Yoshinari Hachisu

Faculty of Science and Engineering, Nanzan University, Seto, Aichi, Japan

Email: {atsu, hachisu}@nanzan-u.ac.jp

Abstract—Pattern search of programs is a fundamental func-
tion for supporting programming. In this paper, we propose a
search method for unpreprocessed programs, which are difficult
to parse. Our parser directly parses them by rewriting token
sequences, and allows minor errors in syntax trees. The search
tool takes queries that are the same as the format of program
fragments. By using the same parser for both queries and target
programs, programmers have no need to describe the detail
structures of syntax trees in queries. To support accurate search,
we also show an alignment tool for branch directives, which
converts undisciplined directives to discipline ones, and a reverse
macro expansion tool, which integrates the use of macro calls.
Finally, we present some experiments in which we have applied
the tools to an open source application, and discuss how to
improve our tools.

Keywords-pattern search, unpreprocessed C program, rewrite
rule, parser

I. INTRODUCTION

Text pattern search is a fundamental function of tools for

editing text documents. It is useful for checking how the

words are used and finding the places of words to be changed.

Program files are also text documents, and we often use

this function to find elements. It is, however, not useful for

finding program patterns, such as candidates of bad smells

and typical uses of functions, and we need a method to search

structural patterns in abstract syntax trees. In the case of the

C language, we need to consider the existence of preprocessor

directives, and pattern search for unpreprocessed programs is

more difficult because the parsers need to accept alternatives

of code introduced by branch directives, such as #ifdef,

and syntactical errors, such as macro calls with statements

in their arguments. Furthermore, describing search queries is

exhausting because we need to understand the details of syntax

trees including preprocessor directives.

In this paper, we propose a pattern search method for un-

preprocessed programs. In our method, users describe patterns

as code fragments, which may include preprocessor directives.

The search tool parses both patterns and target programs by

the same parser and generates syntax trees represented by

token sequences. The syntax trees of the patterns are converted

to the rewrite rules on token sequences that insert markers

before and after the matched regions in token sequences

representing syntax trees of target programs. After the rewrite

rules are applied, the tool outputs code fragments generated

from matched regions on token sequences of target programs

(Figure 1). Figure 2 is an example pattern, which matches the

�������

���	��

���	��

���	��

���	�����	��
�

��������
����

�������
������� ���	��

���
���

�������
���	�����	��
�

���	��
��������
��	�����������

��	���

��������������

�������������
	��������

��������	������

������

Fig. 1: The process of the pattern search tool.

#ifdef ${x:ID_MC}

$[: ${:STMT} $| ${:DECL} $| ${:DIRE} $]+

#endif

$[: ${:STMT} $| ${:DECL} $]

#ifdef ${x}

$[: ${:STMT} $| ${:DECL} $| ${:DIRE} $]+

#endif

Fig. 2: A pattern for continuous branch directives.

pairs of continuous branch directives with same condition that

have a statement or declaration between them. For improving

readability, these pairs may be merged into one. Figure 3 is a

candidate of merging that we found in FreeBSD 10.0 [1] by

the pattern. The symbols “{<” and “>}” represent the markers

of the matched region. Conditions of branch directives often

represent crosscutting concerns, and the search tool is also

useful for finding them. Figure 3 can be applied to find the

common pairs of pre and post processes for specific function

calls, which represent crosscutting concerns.

Our parser can directly parse unpreprocessed programs, but

the syntax trees that it builds may contain incorrect sub-

trees. This is unavoidable for parsing real programs without

normalizing them or applying preprocess for a specific config-

uration. Even if the syntax trees are incorrect, pattern search

is able to succeed because patterns and target programs are

parsed by the same parser, and the parser builds identical sub-

2014 14th IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-5304-7/14 $31.00 © 2014 IEEE

DOI 10.1109/SCAM.2014.16

295

2014 14th IEEE International Working Conference on Source Code Analysis and Manipulation

978-1-4799-6148-1/14 $31.00 © 2014 IEEE

DOI 10.1109/SCAM.2014.16

295

src/sys/i386/include/intr machdep.h, 152

{<#ifdef SMP

void intr add cpu(u int cpu);

#endif

int intr add handler(const char *name, int vector,

driver filter t filter,

driver intr t handler, void *arg, enum intr type flags,

void **cookiep);

#ifdef SMP

int intr bind(u int vector, u char cpu);

#endif>}

Fig. 3: A search result of the pattern Figure 2.

trees for both patterns and the matched regions in programs.

We have developed the parser based on rewrite rules on

token sequences. Rewrite rules gradually inserts syntactical

information to sequences and preserve syntactical errors as is.

The basic concept has been proposed as the island grammar

[2], and an implementation for ANSI C has been proposed as

Iterative Lexical Analysis (ILA) [3]. Our parser is specialized

for unpreprocessed C programs. Though we may be able to

solve some syntactical errors by analyzing how macros are

expanded, we have not adopted it because we assume the

situations that not all definitions are always available, such

as being under development.

Our method has two problems. One is the existence of

preprocessor directives. Users need to consider all possible

directives while describing patterns, but it is difficult to do

actually. The other is unintegrated macro use. If programs

contain the expressions that can be replaced with macro calls,

users need to consider both cases about the use of macro calls.

Since these problems are difficult to solve systematically, we

propose two support tools for normalizing target programs.

One is an alignment tool of undisciplined directives [4], which

do not exist on the border of statements, declarations and

function definitions. The alignment tool moves undisciplined

directives to the borders while preserving the behaviors.

By aligning directives, users have no need to consider the

directives inside expressions. The other is a reverse macro

expansion tool, which searches the regions matched with

the replacement of macro definitions and replaces them with

macro calls. This tool can also contribute to the improvement

of maintainability.

In the following sections, we show the design of the parser

in Section II, and the design of the pattern search tool in

Section III. We also explain the alignment tool of branch

directives and the reverse macro expansion tool in Section IV.

In Section V, we present the evaluation of the parser and

tools and discuss problems of the tools. Our tool set, which

we call TEBA, is built on Perl, and we use the terms and

the symbols of Perl in this paper. The tool set is available at

http://tebasaki.jp/src.

II. TOKENIZED SYNTAX TREE AND THE PARSER

For representing syntax trees containing syntactical errors,

we use token sequences. In a token sequence, a non-terminal

element is represented by pairs of virtual tokens, which mean

the beginning and the end of elements. This style is the same

TABLE I: The types of virtual tokens.

UNIT_BEGIN, UNIT_END the unit of the result

B_DIRE, E_DIRE directives

B_MCB, E_MCB the replacements of macro definitions

B_FUNC, E_FUNC function definitions

B_DE, E_DE declarations

B_ST, E_ST statements

B_TD, E_TD typedef declarations

B_SCT, E_SCT struct definitions

B_EN, E_EN enum definitions

B_UN, E_UN union definitions

B_CP, E_CP non-statement blocks { ... }

B_FD, E_FD function declarators

B_FR, E_FR function references

B_CAST, E_CAST cast operators

B_P, E_P expressions

B_LB, E_LB labels

with the XML format, but we have not adopted it because

the rewrite rules are not limited to XML operations. Each

token has a type and a text. Type means the class of tokens,

such as identifier, literals, and operators. We defined 51 types

as terminal elements and 16 pairs of virtual tokens as non-

terminal ones. Table I is the list of the virtual tokens. Text

is the string representation of a token, and a virtual token

has an empty string. White spaces and comments are also

tokens. By concatenating the texts of all the tokens, we get

the original text of the parsed program. Figure 5 is an example

token sequence generated from Figure 4. To save space in this

paper, all the tokens of white spaces are deleted in the figure.

Token sequences themselves are not comprehensive, and

we present a mixing style of a program and tokens in the

right of Figure 4. The marks surrounding brackets, such as

“[B_ST]” and “[E_ST],” are virtual tokens, which represent

non-terminal elements. The prefixes “B_” and “E_” of type

names mean the beginning and the end of elements. For

improving readability, the virtual tokens “B_P” and “E_P,”

which mean expression level elements, are represented by

curly braces: “{” and “}.” The blue marks following identifiers,

such as “:ID_TP,” mean their classes: type, variable/function,

tag, member, and macro.

The parser parses a token sequence by applying rewrite

rules. Rewrite rules add virtual tokens for identified elements.

They also rename types of tokens to distinguish semantically

different tokens whose texts are the same, such as colons,

which are used for labels, ternary operators, and declarators

in structs. For capturing non-terminal elements, the pairs of

braces and virtual tokens have the same unique pair ids. In

Figure 5, the symbols prefixed with “#” represent pair ids.

A parser based on rewrite rules has been proposed as

Iterative Lexical Analysis (ILA) [3], which supports ANSI C

syntax. Because the basic concept of our parser is the same as

ILA, we mainly explain how our parser treats unpreprocessed

programs. The merits of rewrite rule-based parsers are: (1) it is

possible to parse parts of programs, such as the replacements

in macro definitions, and (2) it is easy to complement tokens in

an ad hoc way. The basic strategy for parsing unpreprocessed

296296

#ifdef ABS_DOUBLE

double abs(double v)

#else

int abs(int v)

#endif

{

if (v > 0) {

return v;

} else {

return -v;

}

}

[B DIRE]#ifdef {ABS_DOUBLE:ID MC}[E DIRE]

[B FUNC][B FD]double:ID TP {[B FR]{abs:ID VF}(double:ID TP {v:ID VF})[E FR]}

[B DIRE]#else[E DIRE]

int:ID TP {[B FR]{abs:ID VF}(int:ID TP {v:ID VF})[E FR]}[E FD]

[B DIRE]#endif[E DIRE]

[B ST]{

[B ST]if {({{v:ID VF} > {0}})} [B ST]{

[B ST]return {v:ID VF};[E ST]

}[E ST] else [B ST]{

[B ST]return {-{v:ID VF}};[E ST]

}[E ST][E ST]

}[E ST][E FUNC]

Fig. 4: A sample program (left) and a mixing style of the program and tokens (right).

UNIT_BEGIN <>

B_DIRE #E0001 <>

PRE_TOP <#>

PRE_DIR <ifdef>

B_P #E0002 <>

ID_MC <ABS_DOUBLE>

E_P #E0002 <>

E_DIRE #E0001 <>

B_FUNC #E0003 <>

B_FD #E0004 <>

ID_TP <double>

B_P #E0005 <>

B_FR #E0006 <>

B_P #E0007 <>

ID_VF <abs>

E_P #E0007 <>

P_L #B0001 <(>

ID_TP <double>

B_P #E0008 <>

ID_VF <v>

E_P #E0008 <>

P_R #B0001 <)>

E_FR #E0006 <>

E_P #E0005 <>

B_DIRE #E0009 <>

PRE_TOP <#>

PRE_DIR <else>

E_DIRE #E0009 <>

ID_TP <int>

B_P #E0010 <>

B_FR #E0011 <>

B_P #E0012 <>

ID_VF <abs>

E_P #E0012 <>

P_L #B0002 <(>

ID_TP <int>

B_P #E0013 <>

ID_VF <v>

E_P #E0013 <>

P_R #B0002 <)>

E_FR #E0011 <>

E_P #E0010 <>

E_FD #E0004 <>

B_DIRE #E0014 <>

PRE_TOP <#>

PRE_DIR <endif>

E_DIRE #E0014 <>

B_ST #E0015 <>

C_L #B0003 <{>

B_ST #E0016 <>

CT_IF <if>

B_P #E0017 <>

P_L #B0004 <(>

B_P #E0018 <>

B_P #E0019 <>

ID_VF <v>

E_P #E0019 <>

OP <>>

B_P #E0020 <>

LIN <0>

E_P #E0020 <>

E_P #E0018 <>

P_R #B0004 <)>

E_P #E0017 <>

B_ST #E0021 <>

C_L #B0005 <{>

B_ST #E0022 <>

RE_JP <return>

B_P #E0023 <>

ID_VF <v>

E_P #E0023 <>

SC <;>

E_ST #E0022 <>

C_R #B0005 <}>

E_ST #E0021 <>

CT_EL <else>

B_ST #E0024 <>

C_L #B0006 <{>

B_ST #E0025 <>

RE_JP <return>

B_P #E0026 <>

OP_U <->

B_P #E0027 <>

ID_VF <v>

E_P #E0027 <>

E_P #E0026 <>

SC <;>

E_ST #E0025 <>

C_R #B0006 <}>

E_ST #E0024 <>

E_ST #E0016 <>

C_R #B0003 <}>

E_ST #E0015 <>

E_FUNC #E0003 <>

UNIT_END <>

Format of tokens: type name pair id? ’<’ text ’>’

Fig. 5: A token sequence generated from Figure 4.

programs is to ignore directives. The parser parses directives

at first and, in the following processes, treats them as white

spaces while preserving them. In general, directives are placed

on the borders of statements and declarations, and this strategy

often works well. There are, however, some obstacles in

practice. Table II shows the obstacles we found in Coreutils

8.22, the examples, and our solutions. Our solutions depend

on Coreutils 8.22, and we need to analyze other programs

for making them more general. Coreutils, however, covers

typical styles of unpreprocessed programs, because it includes

various kinds of programs: commands, system libraries, and

test programs.

The difficulties of parsing real unpreprocessed programs

are categorized to two problems. One is syntactical error and

the other is a lack of definitions of identifiers. The obstacles

except (A7) are typical syntactical errors, and we have relaxed

the parsing rules and added the rules for complementing

lacking tokens, such as semicolons and brackets, based on

heuristics. The complemented tokens have types and empty

texts. Obstacle (A7) affects the structures of syntax trees.

Especially, distinguishing type name and variable/function

name is important. Since it is difficult to make symbol tables

TABLE II: The obstacles for parsing real programs.

(A1)Obstacle: Unbalanced brackets:

#define LOOP BEGIN while (0) {

Solution: Add virtual brackets for completing pairs.

(A2)Obstacle: Statements not followed by semicolons:

INITIALIZE(a)

INITIALIZE(b)

Solution: Add virtual semicolons at the ends of statements.

(A3)Obstacle: Natural language sentences that forcefully cause errors:

#ifndef HAS FUNC1

This system requires FUNC1.

#endif

Solution: Add virtual semicolons at the ends, and concatenate to-

kens in the sentences.

(A4)Obstacle: Types and attributes masked by macro calls:

TYPE(x) func(ARG) { ... }

Solution: Weaken the conditions for capturing function definitions.

(A5)Obstacle: Multiple else nodes:

if (c) ...

#ifdef COND1

else { ... }

#elif COND2

else { ... }

Solution: Allow independent else statements.

(A6)Obstacle: Parsing the inside of macro definitions:

#define VALID TEST(x) if (!cond(x)) prt err(x)

/* Macros are not always expressions. */

Solution: Add virtual tokens for semicolons and statements.

(A7)Obstacle: Lack of definitions of identifiers:

a = (X)(y); /* cast or function call? */

Solution: Guess the class of identifiers, such as type, variable, tag

and member, from their contexts.

(A8)Obstacle: Statements in arguments of macro calls:

REPEAT(NUM, ++i; a[i] = f(i); b[i] = g(i););

Solution: Find function calls which the parser failed to parse, and

add virtual tokens for statements.

exactly for unpreprocessed programs, we assumed same names

are used for the same class. The parser checks the contexts for

each occurrence of identifiers and guesses the classes for each

same name identifier by using heuristics. This assumption is

valid for most programs, though there are rare exceptions 1.

The parser consists of eight filters. Figure 6 shows the

filters and the obstacles that they solve. The filters except

P1 and P3 are mainly described as rewrite rules and small

auxiliary filters. The auxiliary filters are introduced because

1For example, in contrib/oid2name/oid2name.c of Postgresql 9.3.4 [5], the
formal argument eary is declared with type eary too

297297

�������	��
�	������	�������	�������������
�����	��
�	�����

����������� ��
����� ���� ���	��� ��	��
	�����������	
����

����
�� ���� 	���	
	�� ����� ��� ������������
���� 	������ �	������ ���	
��������������	�

����
���
�����

������ ���
�	���� ���� ����������� 	��
���������������������	�
����
�
����
���

�����

����
�� ����
����� ��� 	����	����� ��

���� �����������	
�����

������� �����	����	���������������

����
�� ���	
�����������������	��� ������
�������	�
����
���
�����

���������������������!���
��

������
��	���

�	����
��������	��
����������

�������	
��������	�

�����	��
�	��������	�

�������
���������	�

����������������	�	���������	� �����������������������	�

� ��!���������
�	"�"#�	���	$���

�%��&������	"�����������	�

�'��(�)*������#"�����"��

Fig. 6: The parsing process of the parser.

@OP03 => "OP\s+<[*\/%]>\n"

’{’: _B_X, ’}’: _E_X, ’(’: B_P, ’)’: E_P, ’<’: _B_OP03, ’>’: _E_OP03

{a} * {b} * {c} => {a} <* (b)> * (c) => {a} <* (b)> <* (c)>

{ $op:OP03 $sp:SP $bx#1:_B_X $any:ANYEXPR $ex#1:_E_X }

=>> { ’’#1:_B_OP03 $op $sp $bx:B_P $any $ex:E_P ’’#1:_E_OP03 }

{a} <* (b)> <* (c)> => {(a) * (b)} <* (c)> => {((a) * (b)) * (c)}

{ $bx1#1:_B_X ’(?>’:X $any1:ANYEXPR $ex1#1:_E_X ’)’:X $sp1:SP

$#2:_B_OP03 $op:OP03 $sp2:SP $any2:ANYEXPR $#2:_E_OP03 }

=>> { ’’#1:_B_X $bx1:B_P $any1 $ex1:E_P $sp1 $op $sp2 $any2 ’’#1:_E_X }

Fig. 7: The rewrite rules for parsing expressions combined

with the operators, “/,” “*,” and “%” in the filter P7.

their features are impossible to be implemented by rewrite

rules. We have also replaced some rewrite rules with the

auxiliary filters due to insufficient performance. The rewriting

system of token sequences, which we have built, translates

the rules to Perl scripts of string substitution using extended

regular expressions and rewrites token sequences as a text.

A rewrite rule searches a token subsequence, and then

inserts virtual tokens or changes types of tokens. Figure 7

is an example of the rules in the filter P7. This rule set inserts

virtual tokens _B_X and _E_X for the expressions combined

by operators “/,” “*,” and “%,” and changes the tokens of

_B_X and _E_X to B_P and E_P. The virtual tokens _B_X
and _E_X are temporary tokens, which are temporarily used as

markers and removed by the end of parsing. In this case, the

virtual tokens _B_X and _E_X represent the last identified

expressions. In the filter P7, expressions are identified in

the order of precedence of operators from the bottom-up. In

Figure 7, the lines beginning with # are comments, and the line

beginning with @ defines a special type as a regular expression

in string for tokens.

A rule is of the form: “{ pattern } => { replacement }.”

The token subsequence matched with the pattern is replaced

with the replacement. We can use the operator =>> for

recursive rewriting, instead of =>. The tokens prefixed with

“$”s are variables for matched tokens. Pattern consists of

variables followed by type names, which match any tokens

of the types. The texts of tokens can be specified too. The

alternations: $[: alternative1 $| alternative2 $]

Ex. $[: return ${:EXPR}; $| exit(${:EXPR}); $]

repeats: $[: elements $]quantifier

(quantifier is one of *, +, ?, *?, or +?.)

Ex. $[: ${:STMT} $]*

concatenation: token1 $## token2

(The concatenation of token1 and tokens2 match an identifier)

Ex. prefix_ $## ${x:ID_VAR}

stringification: $# token

(token matches the contents of a string literal)

Ex. $# ${name:ID_VAR}

predefined pattern: ${ name : type }

(Name can be ommited. Type is all types of tokens and predefined

type: DECL, STMT, DIRE, FUNCDEF, EXPR, ARGLIST.)

Ex. ${:DECL}, ${x:STMT}

pattern reference: ${ name }

(The reference matches a token that predefined pattern of the same

name matches.)

Ex. ${x}

region specifier: ${%begin}, ${%end}

(The parser parses whole of a pattern, but generates token patterns

between the specifiers.)

Ex. ${:DECL}

Fig. 8: The meta tokens for queries.

ids, such as “#1” and “#2,” following the variable names

means that the tokens have the same pair ids. By specifying

ids, pattern matches the correct pairs of virtual tokens, which

represent non-terminal elements. Pattern can include named

groups and repeats as with regular expression. In replacement,
variables are referred to by name. The variables followed by

type names change the types of tokens. New tokens can be

inserted by describing the tokens with texts and type names,

such as “’’:_B_X.” For the optimization of performance,

pattern can include the special pairs of tokens “’(?>’:X”

and “’)’:X,” which suppress backtracking while matching.

They are the same with independent subexpression of Perl.

III. PATTERN SEARCH ON TOKENIZED SYNTAX TREES

A typical technique of pattern search on syntax trees is to

describe patterns of structures of trees, such as using XQuery.

Programmers, however, need to know exact structures of trees

for describing queries, and sometimes need extra efforts, such

as parsing small sample programs, to understand them. In

the case of unpreprocessed programs, the structures are more

complicated to understand due to the existence directives and

macro uses. Our approach is to describe a code fragment

as a query, as shown in Figure 2, and to generate patterns

for syntax trees from it automatically. The format of the

queries is basically the same with the C, and is extended

with meta tokens in Figure 8. In Figure 2, each branch

directive contains a sub-pattern matching a list of statements,

declarations, and directives. A sub-pattern between two branch

directives matches a statement or declaration.

Patterns are parsed by the parser in Section II, which is

extended for the meta tokens. The meta tokens are defined as

lexical tokens, and predefined patterns are treated as syntac-

tical elements. The symbols for alternations and repeats are

preserved, but ignored as white spaces in the parsing process

298298

�������	

�������� ��
�������� ��
����� ��������	�
�������� ��
� �
�
�������� ��

�������� �
�����!��������
�����"��������
��������
��������������
��������
�����#��$
$
�����%��������
��&'()�*�+&��
���,
	�-���
��&&�!�����&&�"��*�
�������
��&&�"��*��&&�!����
	

���������	��

a 	
�������
����
����
�����

��	����
�.

a���
����
�����	�����
���

��������
��������������

��������
���������

�����������	��
��������
��

������

������������
�������
�

�������

������������

Fig. 9: An example of rule generation.

A or B:

preg.pl -ta A file.c | preg.pl -T B

(Searches regions matched with patterns A or B in file.c)

A and B:

preg.pl -t A file.c | preg.pl -uT B

(Searches pattern B in the regions matchend with pattern A.

B should be specialized one of A.)

A and not B:

preg.pl -t A file.c | preg.pl -rT B

(Removes the regions matched with pattern B from the regions

matched with pattern A. B should be specialized one of A.)

A in B

preg.pl -t B file.c | preg.pl -ucT A

(Searches pattern A inside the regions matched with pattern B.)

Options:

-t: outputs token sequence instead of program text.

-T: reads an input as token sequence instead of program text.

-a: outputs the whole of target programs, including matched regions.

-u: removes markers from the input.

-r: removes matched regions from the input.

-c: searches between markers.

Fig. 10: Fundamental combinations of queries.

as with preprocessor directives. After parsing patterns, the tool

generates rewrite rules internally. Figure 9 shows an example

of parsed tokens and generated rewrite rules. The pattern of

the rewrite rule contains the variables corresponding to the

parsed tokens and three kinds of symbols: group “match”

for capturing the whole of tokens, variables for arbitrary white

spaces, and a context token for stopping recursive matching.

The replacement contains the group reference and two pairs of

marker tokens representing matched token subsequences. One

of the pairs is to be used to represent the context regions for

output, mentioned later. After applying generated rewrite rules

to the target programs repeatedly until marking all matched

regions, the tool outputs the marked regions.

The expressive power of our patterns is limited. If we

introduce more expressive meta tokens, we must face the

same difficulties of parsing unpreprocessed programs. Briefly,

two different syntaxes for the C and meta tokens are mixed

in patterns. We can, however, combine queries without in-

preg.pl -ta ’${:FUNCDEF}’ sample.c | preg.pl -Tuc -f ifdef.pt

Fig. 11: A command for searching directives inside functions.

#ifdef ${:EXPR}

$[: ${:STMT} $| ${:DECL} $| ${:DIRE} $]+

#endif

%%---

#ifndef ${:EXPR}

$[: ${:STMT} $| ${:DECL} $| ${:DIRE} $]+

#endif

%%---

#if ${:EXPR}

$[: ${:STMT} $| ${:DECL} $| ${:DIRE} $]+

#endif

Fig. 12: ifdef.pt: a pattern for branch directives.

troducing special notations. Our tool is implemented as a

command-line tool, and we can combine queries by connecting

tool invocations with pipes. Figure 10 shows fundamental

combinations and the options of the command. In the figure,

preg.pl is the command name. The patterns can be specified

directly as an argument, or given by files with option “-f.”

In the latter case, we can specify multiple patterns in a file.

For example, when we want to count branch directives used

inside functions as a metric, we can gather the directives

by Figure 11. The pattern file ifdef.pt is Figure12. This file

contains three patterns separated by “%%---”, and the tool

finds all types of branch directives.

Programmers often want to see the contexts including the

matched regions. The search tool has three options for context

regions: (1) number of lines, (2) number of parent blocks,

and (3) number of borders. Type (1) is the same way with

grep, which is a traditional line-based search tools. Type (2)

is to specify how many elements it goes up to the root of the

tree. Type (3) is similar to (1), but it counts the number of

borders of statements, declarations, function definitions, and

directives while moving on the token sequence in the both

directions. For example, Figure 13 is a pattern to find function

bodies that consist of a single branch directive. This pattern is

useful for finding the refactoring candidates when we select a

coding style in which functions are defined separately for each

compile condition. Figure 14 is a search result in FreeBSD

10.0, and the context option is to display a parent block, which

is the whole function in this case. In Figure 13, function f()
is defined, but the tool searches the function bodies and not

function f() itself. Though the tool parses the whole of the

pattern, it generates a rewrite rule using only tokens between

${%begin} and ${%end}. The reason for introducing this

style is the difficulty of defining a general pattern of function

definitions. A function definition may have macro uses in its

return type, such as “__inline” in Figure 14, or a branch

directive in its head, as shown in Figure 4. Figure 13 can match

only function bodies and not other compound statements

because a virtual token for the end of functions, E_FUNC,

exists before ${%end}. This technique, which is to describe

299299

int f()

${%begin}

{

#ifdef ${:EXPR}

$[: ${:STMT} $| ${:DECL} $| ${:DIRE} $]+

#endif

}

${%end}

Fig. 13: A pattern for a function body covered by a branch

directive.

src/sys/i386/include/cpufunc.h, 132

static inline void

enable intr(void)

{<{
#ifdef XEN

xen sti();

#else

asm volatile("sti");

#endif

}>}

Fig. 14: A search result of Figure 13 with a parent block.

concrete codes as contexts, is limited to apply, but convenient.

IV. SUPPORT TOOLS FOR ACCURATE SEARCH

When we describe patterns for unpreprocessed programs,

we always consider the existences of directives. Especially

undisciplined directives are problematic. If they exist, we

need to consider the directives inside expressions, and the

possible positions they appear are too many to describe

patterns. Undisciplined directives may also introduce structural

errors, such as unpaired brackets and multiple else blocks in

a if statement. To remove undisciplined directives, we have

developed an alignment tool for directives. The tool moves

the branch directives to the borders of four types of elements:

statements, declarations, function definitions, and directives.

These elements are units of lists, and the branch directives

that have them as alternatives do not break the structures of

syntax trees.

Macro calls are also problematic for search. The queries

become complex and inaccurate when a macro is used and

there still exist the parts that can be replaced with the macro

calls in a program. We need to describe queries while consid-

ering both used and unused cases. This situation is, however,

a bad smell for refactoring. We should integrate macro uses

before search. To support the refactoring, we propose a reverse

macro expansion tool, which replaces the parts matched with

the replacement of a macro definition with the macro calls.

Macro calls have another problem that they make the parser

fail to parse correctly. For example, they may hide parts of

control statements, and the parser fails to parse them as state-

ments. It is difficult to improve this problem systematically,

and we need to refactor the programs for the parser-friendly

style. The reverse macro expansion tool can support it; after

extracting problematic macro calls, we can apply the reverse

macro expansion tool to the extracted parts with the new macro

definition that does not break the syntax. The forward macro

expansion is almost the same with the reverse one. We have

implemented a tool for the forward expansion too.

�����
����	��

����
�	����
����
����	���
����
�	����
�

����	��

�����
����
����
����	���
����
�	����
�
�	��	
�����
����
����	���
����
�	����
�
�	����

����	��

����	���
�����
����
����
����
�
�	��	
�����
����
����
�
�	����

�	��	
����	���
�����
����
����
�
�	��	
�����
����
�
�	����
�	����

����	��

�������
�	����
��������
����	��

�
�	����

����	��

�������
��������
����	��

�
�	����
�	��	
��������
����	��

�
�	����
�	����

����	��

�������
��������
�
�	��	
��������
�	����

��������	
���	�
�	�����	��������	�������
���	�	���

��������	
���	�
�	�����	������������
���	�	��

Fig. 15: The alignment processes for conflicting directives.

A. The alignment tool for branch directives

The alignment tool moves branch directives to the borders

by copying texts between the directives and the borders into

the each branch. The target borders are determined by the

smallest elements or lists of them that contain the directives.

In this section, we use a term “branch” as the parts between

two paired directives of #ifdef, #else, #endif. For sim-

plifying the explanation, we use these three kinds of directives

in the following, though our implementation supports all kinds.

If two directives conflict, they need to be moved in order.

The conflict means that one directive exists in a branch of

the other directive or that a common text part exists that is to

be moved into both branches. The tool moves the conflicting

directive on the former line, and then moves the other one.

Figure 15 shows two typical cases of conflicts and how they

are aligned. If the conditions are contradicted, such as the

combination of defined(A) and !defined(A), the tool

deletes the branches. In the case (2), the tool deletes two

pairs of directives. If the contradicted conditions remain, the

unbalanced brackets may occur like the center one in the case

(2), and the parser fails to parse correctly.

The correctness of the borders is important for this tool.

Though our parser allows incorrectness of syntax trees, the

border positions are almost correct. The borders can be

identified by the tokens that are delimiters of statements and

declarations. Only the implicit delimiters of statements and

declarations, which are not followed by semicolons like (A2)

in Table II, may be incorrect.

The alignment tool has an advantage that it makes the syntax

tree structurally simple, and the aligned programs can be ana-

lyzed by existing analyzers that accept only disciplined direc-

tives. We show the aligned program of Figure 16 in Figure 17,

300300

#ifdef ABS_T

ABS_T abs_##ABS_T(ABS_T v) {

#else

int abs_int(int v) {

#endif

#ifdef ABS_T

if (ABS_T_CMP(v))

#else

if (v >= 0)

#endif

return v;

else

return

#ifdef ABS_T

ABS_T_REV(v);

#else

-v;

#endif

}

Fig. 16: A program including undisciplined directives.

#ifdef ABS_T

ABS_T abs_##ABS_T(ABS_T v) {

if (ABS_T_CMP(v))

return v;

else

return

ABS_T_REV(v);

}

#else

int abs_int(int v) {

if (v >= 0)

return v;

else

return

-v;

}

#endif

Fig. 17: An aligned program of Figure 16.

in which two functions are defined separately. The drawbacks

are that aligned programs may become exponentially large and

that users need to understand the correspondences between the

original program and the aligned one. In our implementation,

we prepared options for selecting target directives: (1) all, (2)

directives with else branches, and (3) marked ones by users.

Option (2) and (3) are for reducing the size of the aligned

programs. We have prepared option (2) because the directives

without else branch do not break syntax even if the parser

ignores directives in the parsing process. The marks for option

(3) are the specific comments at the end of directive lines.

A typical use of option (3) is to align directives in only

blocks that include candidates of search results. We can find

candidate blocks by searching key elements in patterns with

an option for displaying contexts. The alignment tool has an

option to add target marks to the directives in context regions

that the search tool outputs. After searching key elements and

aligning blocks, we can search patterns without considering

the existence of directives.

B. Reverse macro expansion

The reverse macro expansion tool searches the parts

matched with the replacement of a macro definition, and

replaces them with the macro calls. Ideally, by applying all

macro definitions in programs, we can integrate macro uses.

In practice, the macro definitions of constant values may be

applied to unexpected places, and we need to manually select

the definitions that we want to apply.

(Q1) The query for searching macro definitions with arguments:

#define ${name:ID_MC}(${args:ARGLIST}) ${body:ANY}

(Q2) The query for searching macro definitions without arguments:

#define ${name:ID_MC} ${body:ANY}

(Q3) The pattern for removing do-while(0) in macro definitions

without arguments:

%before

#define ${name:ID_MC} do ${body:STMT} while(0)

%after

#define ${name} ${body}

%end

Fig. 18: The queries used in the reverse macro expansion tool.

Definition: #define ADD(a, b) ((a) + (b))

Reverse Pattern:

%ex

%before

${a:EXPR} + ${b:EXPR}

%after

ADD(${a}, ${b})

%end

Forward Pattern:

%ex

%before

ADD(${a:EXPR}, ${b:EXPR})

%after

((${a}) + (${b}))

%end

Fig. 19: Macro expansion patterns generated in the tool.

The expansion tool is an extension of the search tool. It

searches the macro definitions by the queries, Q1 and Q2

in Figure 18, and generates transformation patterns, which

are extensions of the search queries. While the search tool

inserts the markers around the matched regions by using

rewrite rules, the expansion tool replaces the matched regions

with the tokens of macro calls. Before converting from macro

definitions to transformation patterns, the tool analyzes macro

arguments and replaces them with predefined patterns. Fig-

ure 19 shows the examples of internal transformation patterns

that the tool generates from a macro definition. In the “Reverse

Pattern,” the query following %before is generated from the

replacement of macro definition. The format is the same with

the search tool, except the predefined patterns have names. The

expression following %after is a macro call template, which

contains the references of the named predefined patterns. The

references are to be replaced with the tokens matched by the

predefined patterns. %ex means that the query is an expression

and not a statement.

To avoid unexpected results of expansions, macro defini-

tions often contain extra parentheses and control statements,

“do ... while(0),” surrounding the macro replacements.

These extra descriptions are not used at the places to be

replaced. The expansion tool normalizes macro definitions by

the transformation patterns that remove the extra descriptions,

like Q3 in Figure 18. In the “Reverse Pattern” of Figure 19,

the extra parentheses of the arguments are removed.

When we improve the correctness of a syntax tree by

refactoring macro definitions, we need to expand macro calls

before the reverse expansion. The forward expansion of macro

calls is easy to be implemented, because the mechanism is the

same with the reverse replacement. Figure 19 also shows an

internal pattern of the forward expansion. In the pattern, the

extra parentheses remain because whether they can be removed

301301

depends on the contexts of macro calls.

V. EVALUATION AND DISCUSSION

A. Evaluation of the parser

Our search tool parses both target programs and queries us-

ing the same parser. To evaluate the parser, we have applied it

to all *.c and *.h files in Coreutils 8.22, 1169 files in total. We

have examined the results from three points: (1) consistency,

(2) uncombined expressions, and (3) type identification. Our

parser allows incorrect syntax trees, and it is difficult to check

the correctness for all programs. We had tested the parser with

small samples and several files in Coreutils, and we have found

these points can be applied for systematic evaluations.

(1) The evaluation of consistency means to check existence

of unpaired brackets, unpaired virtual tokens, and temporary

tokens. The existence of unpaired brackets and unpaired virtual

tokens means that the parser fails to build a syntax tree.

Unpaired brackets occur by failing to insert virtual brackets

in the filter P3 in Figure 6. Virtual tokens are not always

inserted by pairs, especially in the P5 filters. Temporary tokens

are virtual tokens that are introduced as temporary markers

in rule sets. For distinguishing the temporary tokens, we use

the names beginning with “_” for them, such as _B_X in

Figure 7. The existence of temporary tokens means the rules

are not applied as expected. We have processed all 1169 files

in Coreutils, and found all results are consistent.

(2) An uncombined expression means two successive ex-

pressions that are not combined with an operator. This sit-

uation occurs by incorrect parsing rules. For example, if an

occurrence of a binary operator is identified as a unary oper-

ator, this situation occurs. Our parser tries to find statements

not followed by semicolons. If it misses to find, uncombined

expressions may occur. There are, however, cases that two

successive expressions are valid, and we need to check them

manually. For example, if a declaration has two macro calls for

types and attributes, these two macro calls are not combined by

an operator and look like an uncombined expression. We have

found 1536 uncombined expressions in 196 files (16.8%); the

ones caused by type identification errors are 25 in 12 files.

The type identification error means the error that identifiers

representing type are analyzed as other kinds of identifiers,

such as variables. The ones caused by string concatenations,

where all strings are hidden by macro calls, are 207 in five

files. These 232 errors are difficult to fix because the parser

does not use the information of macro expansion. The others

are caused by macro calls representing types and attributes

in declarations. Though they are correct results, they may

cause other errors such as incorrect identification of types and

declarations.

(3) We have checked the types are identified correctly,

because the result (2) suggests the syntax trees may contain

incorrect identification of types. Since it is difficult to know

all right classes of identifiers, we have checked the identifiers

whose name ends by “_t”, which is a typical naming conven-

tion for type name. We distinguished same name identifiers in

different files. We have found 1614 identifiers and confirmed

file: lib/getopt.in.h

directive: # define __GETOPT_CONCAT(x, y) x ## y

applied to: 499 files (117701 places)

file: lib/stdarg.in.h

directive: # define va_copy(a,b) ((a) = (b))

applied to: 414 files (18662 places)

file: src/system.h

directive: #define _(msgid) gettext (msgid)

applied to: 6 files (55 places)

file: lib/filename.h

directive: # define ISSLASH(C) ((C) == ’/’)

applied to: 33 files (65 places)

Fig. 20: Macro definitions whose reverse expansion is applied.

that 1428 (88.5%) identifiers are identified as type. Most of

the types that are not identified appear only in cast operators

and no declaration using them exists.

B. Evaluation of the support tools

For preparing test queries for the search tool, we have

generated queries for reverse macro expansion from 1851

macro definitions extracted from src and lib in Coreutils 8.22.

These definitions do not include duplications and the ones that

define constant values. The reverse macro expansion tool is an

extension of the search tool, and the difference is the way to

rewrite the matching regions. The evaluation of the expansion

tool can be understood as the one for the search tool.

For confirming that the queries can find program parts,

we have applied the queries to 521 files, which are all *.c

files in src and lib directories. As a result, 374 queries have

been applied to 504 files, 6.86 million places in total. This

result does not include the self-applications of macro defini-

tions, which means the replacement of a macro definition is

replaced with the macro call of itself. There are many generic

macros, such as __GETOPT_CONCAT and va_copy(a,b)
in Figure 20, and reverse expansion of these macros is not

useful. We have found examples of unintegrated macro uses.

The typical examples are macro _() and ISSLASH() in

Figure 20. These macros are used in many files, but several

files contain the parts that can be replaced. We have also found

another interesting example; a macro POS_AFTER_TAB is

defined in the file src/pr.c, but an expression that can be

replaced still exists in the same file (Figure 21).

We have applied reverse expansion for each macro definition

to the file where the macro is defined. In this case, we

have set the options of disabling the normalization of queries

and of allowing the self-application of macro definitions.

We expected all the replacements in macro definitions are

replaced with the macro calls of themselves. The result is

that 1885 of 2045 (90.7%) macros are replaced. We have

confirmed that complicated definitions are replaced, such

as DEFINE_SORT_FUNCTIONS in src/ls.c, which includes

function definitions. The macros that are not replaced are

162. The reason of the failure is that the classes of identifiers

are different. Because the macro definitions have not enough

information to guess the class of identifiers, the classes of

identifiers are different from the ones in the target programs.

302302

A target macro definition in src/pr.c:

/* The horizontal position we’ll be at after printing a tab character

of width c_ from the position h_. */

#define POS_AFTER_TAB(c_, h_) ((h_) + TAB_WIDTH (c_, h_))

A result of reverse macro expansion:

--- coreutils-8.22/src/pr.c 2013-12-04 09:48:30.000000000 -0500

+++ pr.x 2014-03-20 10:30:36.000000000 -0400

@@ -1275,8 +1275,7 @@

/* Estimate chars_per_text without any margin and keep it constant. */

if (number_separator == ’\t’)

- number_width = (chars_per_number

- + TAB_WIDTH (chars_per_default_tab, chars_per_number));

+ number_width = (POS_AFTER_TAB(chars_per_default_tab,chars_per_number));

else

number_width = chars_per_number + 1;

Fig. 21: A result of reverse macro expansion.

We discuss how to solve this problem in Section V-D.

C. Evaluation of the alignment tool

For confirming that the tool aligns the directives with-

out breaking the semantics, we have applied the alignment

tool to all files in Coreutils 8.22. The transformation may

exponentially increase the sizes of files, and the tool has

failed for five files2 due to lack of memory. For checking the

correctness of the modified programs, we have compiled them

and run the test programs. We have gotten a compile error for

src/factor.c because a branch directive and a macro definition

referred to in the branch condition are swapped in position.

This is caused by an empty macro that appears without the

following semicolon. The parser combines this macro call to

the following declarations, and the directives between them

are treated as undisciplined. This error is unavoidable without

knowing that the macro is empty. After replacing the file

with the original one, we have confirmed the compilation

succeeded. The result of the test has become the same with the

original one. This means the tool transforms programs without

breaking the semantics, except src/factor.c.

The tool has modified 147 (12.6%) files in 1164 files, not

including the five failed files. The directives to be moved

comprise 654 (8.9%) directives of all 7232 directives. The

total size of the modified files is increased to 202.9%. We have

applied the tool again with the option of restricting the branch

directives that have else parts, which may make the syntax

trees incorrect. In this case, the tool has worked for all files,

including the five files failed in the former experiment. The

modified files are 32 (2.7%) in 1169 files, and the directives

that are to be moved are 98 (4.6%) in 2119 directives. The

size of the modified files is increased to 167.4%. The number

of undisciplined directives is not high, but it is hard to ignore

them. For maintainability, keeping the sizes smaller is better.

Our tool uses a brute-force algorithm, and we need to consider

sophisticated algorithms [4].

D. Discussion

These results show that the parser accepts real programs

and generates syntax trees. Though it is difficult to measure

2lib/vasprintf.c, src/{sty.c, sig2str.c}, gnulib-tests/test-{signal, fcntl}-h.c

the accuracy of the parser exactly, we can guess that the errors

are less than 20% conservatively from the experiments on two

successive expressions and type identifications. This is a little

higher than we expected, but it does not affect the accuracy

of the search tool directly because the tool requires the same

results of parsing for both queries and target programs.

The result of the experiments on the reverse macro expan-

sion tool shows that the search tool can find the complex

parts, such as control statements and functions. Though we

have evaluated the self-application of macros, it is not enough

to evaluate that the tool can find all the parts. By testing

small examples, we have found that the reverse expansion

tool may not replace a macro whose arguments are referred to

more than twice. For example, if the macro is “#define
POW(a) ((a)*(a)),” the tool needs to find same two

expressions for the argument a. If the expression to be

replaced is “(x+1)*(x+1),” the tool need to compare the

two expressions “(x+1)” for equality. Our rewriting system,

however, has no function for comparing sub-trees, and the tool

cannot match the expression. The system can compare the

equality of two tokens, such as variables, and there are cases

that tool can find the expression, such as Figure 21, in which

the argument h_ appears twice. We are going to improve the

rewriting system for supporting equality of two sub-trees.

The experiment on the alignment tool shows that the borders

of elements are correctly identified by the parser because the

tool is never trapped in an infinite loop and does not break the

semantics. Though the tool has failed for five files, the reason

is not identification of the borders. These files contain many

directives in a statement or a declaration. For example, the

declaration of variable mode_info in src/stty.c contains 34

directives. These directives have no else parts, and they never

break the syntax and the readability. It is a practical solution

to align only the directives containing else parts.

A big problem with the search tool is the identification of

the classes of identifiers. Especially, the ability to distinguish

types and variables/functions has a great effect on the ac-

curacy of the search. We have three options for improving

this ability: (a) improving the rules of the parser, (b) using

the symbol information of target programs, and (c) ignoring

differences between types and variables. The option (a) is

a straightforward way for improving parser. The rules for

distinguishing types and variables depend on heuristics, and

there may be room to improve them. We should, however,

avoid introducing complicated heuristics. The option (b) is

to use extra information. If the queries are parsed with the

information of the identifier classes extracted from the target

programs, the correctness of the queries increases. There

are cases that this approach does not work. If a type is

described as a predefined pattern in a query, and the identifiers

corresponding to the type in the target programs are identified

incorrectly as variables, the query never matches. The option

(c) is to degrade the correctness of syntax trees for both the

query and the target programs. By treating all the user-defined

types as variables, the effect of incorrect identification can be

eliminated. This approach can decrease the false negatives, but

303303

increase the false positives because the matching conditions

become weak. We are going to improve the parser while

considering these options.

VI. RELATED WORK

Ohloh Code [6] provides a code search service. Ohloh

adds the tags of elements, such as class and method, in

programs, and the tags can be used in the queries. SrcML

[7] parses unpreprocessed programs and generates them in

XML format. For searching elements, we can use the standard

XML methods, such as XQuery and XSLT. These tools do

not support structures of expression levels. SrcML does not

support the classes of identifiers, and implicit termination of

statements. LSME [8] is a token-based fact extractor, whose

approach is similar in terms of program pattern matching based

on token sequences. LSME does not treat syntactical elements,

and the power of the pattern is lower than ours.

There are tools for supporting analysis or refactoring of

unpreprocessed programs [7], [9]–[12]. Though these tools

accept unpreprocessed programs with disciplined directives

or require specific conditions of preprocessing, they provide

dependency analysis functions or the base information for

them, which our tool set does not support. Our tool set

can support them as a preprocessing filter for converting

undisciplined directives to discipline ones. CRefactor [13]

and SuperC [14] support undisciplined directives, but they

align directives in parsing. Our parser preserves undisciplined

ones in parsing, and the alignment tool can align directives

selectively after parsing.

Rascal [15] supports search patterns as code fragments

extended with typed pattern variables, which is the same style

with our patterns. The differences are that our patterns support

contexts for concrete patterns and that back references of

pattern variables can be used in patterns. The former is intro-

duced for avoiding complex patterns matching to unpredictable

macro uses, and Rascal may not need this technique because

the syntax of a target language is strictly defined.

VII. CONCLUSION

We have proposed a pattern search method for unprepro-

cessed programs. Our parser converts the programs to token

sequences, and parses them by applying rewrite rules. By using

rewrite rules, the parser parses the insides of directives and

accepts syntactical errors. Our search tool accepts the queries

described as code fragments extended with meta tokens. The

tool can search the parts containing the syntactical incorrect

elements because the queries and the target programs are

parsed using the same parser and the results of parsing

are identical. We have also shown the two support tools

for accurate search: an alignment tool for branch directives

and a reverse expansion tool for macro definitions. Though

our tool set does not support the complicated queries using

dependencies, it provides us a convenient and lightweight

environment for search. They also enable other analyzers to

analyze the undisciplined programs by converting them to

disciplined ones.

Future work is to improve the class analysis of identifiers.

Our experiment shows that the quality of the class analysis

strongly affects the one of the search functions. The implemen-

tation and the experiments are based on Coreutils 8.22. Though

we have applied our tools to FreeBSD, as shown in examples,

we have not tested enough on it. There is a threat that the result

depends on Coreutils. We need to apply other open source

applications and improve rewrite rules of the parser and the

search algorithms. We also need to extend our tools for the

other programming languages whose programs are mixtures

of multiple languages, such as JavaScript and HTML.

ACKNOWLEDGMENT

We would like to thank Prof. James R. Cordy at Queen’s

University for his useful advice and support. This work

was partially supported by JSPS KAKENHI Grant Number

26350344.

REFERENCES

[1] T. F. Project, “FreeBSD,” https://www.freebsd.org.
[2] L. Moonen, “Generating robust parsers using island grammars,” in

Proc. 8th Working Conf. on Rev. Eng. IEEE Computer Society Press,
Oct. 2001, pp. 13–22. [Online]. Available: http://www.cwi.nl/∼leon/
papers/wcre2001/

[3] A. Cox and C. Clarke, “Syntactic approximation using iterative lexical
analysis,” in 11th Inter. Work. on Program Comprehen., 2003., 2003,
pp. 154–163.

[4] J. Liebig, C. Kästner, and S. Apel, “Analyzing the discipline
of preprocessor annotations in 30 million lines of C code,” in
Proceedings of the Tenth International Conference on Aspect-oriented
Software Development, ser. AOSD ’11. New York, NY, USA: ACM,
2011, pp. 191–202. [Online]. Available: http://doi.acm.org/10.1145/
1960275.1960299

[5] T. P. G. D. Group, “PostgreSQL:the world’s most advanced open source
database,” http://www.postgresql.org.

[6] B. D. S. Inc., “Ohloh code search,” https://code.ohloh.net.
[7] M. L. Collard and J. I. Maletic, “Document-oriented source code

transformatin using xml,” in Proc. of 1st Inter. Work. on Software
Evolution and Transformation, 2004, pp. 11–14.

[8] G. C. Murphy and D. Notkin, “Lightweight lexical source model
extraction,” ACM Trans. Softw. Eng. Methodol., vol. 5, pp. 262–292, July
1996. [Online]. Available: http://doi.acm.org/10.1145/234426.234441

[9] I. D. Baxter, C. Pidgeon, and M. Mehlich, “DMS®: Program
transformations for practical scalable software evolution,” in Proc. 26th
Inter. Conf. on Soft. Eng. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 625–634. [Online]. Available: http://dl.acm.org/
citation.cfm?id=998675.999466

[10] Y. Padioleau, “Parsing C/C++ code without pre-processing,” in Proc.
18th Inter. Conf. on Compiler Construction 2009. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 109–125.

[11] D. Waddington and B. Yao, “High-fidelity C/C++ code transformation,”
Sci. Comput. Program., vol. 68, pp. 64–78, September 2007. [Online].
Available: http://dl.acm.org/citation.cfm?id=1287845.1288023

[12] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and
T. Berger, “Variability-aware parsing in the presence of lexical macros
and conditional compilation,” SIGPLAN Not., vol. 46, no. 10, pp.
805–824, Oct. 2011. [Online]. Available: http://doi.acm.org/10.1145/
2076021.2048128

[13] A. Garrido, “Program refactoring in the presence of preprocessor direc-
tives,” Ph.D. dissertation, Champaign, IL, USA, 2005, aAI3199001.

[14] P. Gazzillo and R. Grimm, “SuperC: parsing all of C by taming the
preprocessor,” SIGPLAN Not., vol. 47, no. 6, pp. 323–334, Jun. 2012.
[Online]. Available: http://doi.acm.org/10.1145/2345156.2254103

[15] P. Klint, T. van der Storm, and J. Vinju, “Rascal: A domain specific
language for source code analysis and manipulation,” in Source Code
Analysis and Manipulation, 2009. SCAM ’09. Ninth IEEE Inter. Working
Conf. on, Sept 2009, pp. 168–177.

304304

